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ABSTRACT LIFT FAN SYSTEM TYPES 

Low pressure r a t i o  fan engines are receiving in- 

Two general types 
creasing attention as a means t o  provide low speed 
l i f t  for c iv i l ian  VTOL transports. 
of fan l i f t  engines tha t  are being studied are inte- 

design studies of both types of l i f t  fan systems have 
been made. The paper summarizes a portion of t he  re- 
su l t s  of the engine design studies,  including the  cru- 
c i a l  engine requirements, and some of t he  characteris- 
t i c s  of t he  emerging engine designs of each type. 

INTRODUCTION 

m 
O) 

w gra l  fans and remote powered fans. Preliminary engine (D 

’ Large VTOL a i r l i ne r s  are being considered fo r  
future c i v i l  a i r  transportation systems. 
pMblems tha t  m u s t  be solved before such a i r c ra f t  can 
be designed i s  t o  find a suitable ver t ica l  l i f t  en- 
gine system. M a n y  different types of l i f t  engine 
systems have been proposed including ro tors ,  propellers 
(tilt wings), jets and ducted fans. 
wing a i r c ra f t  have been considered for c iv i l ian  trans- 
port use but these a i r c ra f t  have lower cruise speeds 
(ref. 1) , and m a y  have poorer r ide  qua l i t i es  than j e t  
powered a i r c ra f t .  
accept ro tor  or propeller driven a i r c ra f t  a f t e r  be- 
coming accustomed t o  je t  powered a i r l iners .  The use 
of lightweight, compact turbojets for ver t ica l  l i f t  has 
been demonstrated (the Dornier Do31) but the high noise 
level of turbojet  engines m a k e s  them unacceptable 
for c iv i l ian  use. Therefore, the  favored c iv i l i an  
VTOL configuration evolves as one u t i l i z ing  low pres- 
sure r a t io  (high bypass r a t io )  fans fo r  low speed 
f l i gh t  ( re f .  2 ) .  A number of l i f t  fan engines have 
been studied and designed t o  various depths (refs. 3 
and 4 ) ,  but as the  a i r c ra f t  and engine requirements 
are further defined there i s  a need t o  reexamine and 
update the  engine studies.  
ferent types of  l i f t  fan systems the  engine studies 
may provide, for a given set of design requirements, a 
par t  of t he  information needed t o  make a comparison. 
In l i ne  with t h i s  objective NASA-Lewis currently has 
mderway a program t o  study c iv i l ian  l i f t  fan en- 
gi-nes and provide a technology base fo r  these engines. 

This paper summarizes a portion of two NASA 
s#onsored contracts with the  General Elec t r ic  Company 
t o  make design studies of l i f t  fan engines. The 
crucial  engine requirements, as presently viewed, are 
discussed and the  chief characterist ics of the  emerg- 
iflg engine designs are described. 

One of the  

Rotor and tilt 

In addition, the  public mw not 

Also since there are dif-  

L i f t  fan engine systems can be generally categor- 
ized by type drive arrangement as e i ther  in tegra l  o r  
remote. The in tegra l  engine has a co-axially located 
lie fan and core engine i n  a single self-contained 
unit  such as tha t  shown i n  figure l ( a ) .  It is  fun- 
damentally similar t o  a high bypass r a t i o  turbofan 
engine with special  emphasis placed on achieving a 
short engine length. 
used t o  shorten the  engine are a l o w  cycle pressure 
ratio,. and hence a minimum number of compressor 

\ s tages ,  minimum number of turbine stages, and a re- 
verse flow combustor. 

I n  the  remote fan system the  gas generator and 
lift fan are separate units connected by gas ducting. 
In  the presently preferred fan arrangement the  

/ l i f t  fan i s  driven by a single stage turbine attached 
t o  the  fan blade t i p  shroud. Two types of gas gener- 
ators are being considered, a turbojet  and a turbofan 
(fig.  l ( b ) ) .  
a re  ducted from it t o  the  lift fan turbine. In the  
turbofan system a large amount of re la t ive ly  cool a i r  
i s  bled from the  low pressure spool and delivered t o  
the  l i f t  fan turbine. Before entering the  s c r o l l  the  
temperature leve l  of t he  air i s  increased i n  an 
auxiliary combustor. 
t h e  turbojet  and turbofan systems is the ducting of a 
smaller volume flow of cool a i r  f o r  the  turbofan 
system, but with the  addition of a more complicated 
gas generator. Typical a i r c ra f t  configurations em- 
ploying in tegra l  and remote fans are described i n  the 
following paragraphs. 

sidered for VTOL a i r c ra f t  having in tegra l  l i f t  engines 
a re  shown i n  figure 2. One concept (fig. 2(a)),  
u t i l i ze s  t h e  in tegra l  engine only fo r  VTOL, and a 
different engine fo r  cruise. The cruise engine, w i t h  
appropriate thrust  vectoring devices, could a l so  be 
used t o  augment the  l i f t  of the in tegra l  engines and/ 
o r  be used fo r  l o w  speed control of the  aircraft. 
signing the  a i r c ra f t  with different l i f t  and cruise 
engines permits each engine type t o  be optimized fo r  
a par t icu lar  function but requires two kinds of en- 
gines per a i r c ra f t .  The second concept ( f ig .  2 (b) ) ,  
u t i l i ze s  the same engine type fo r  both VTOL and 
cruise.  The l i f t / c r u i s e  engines are used during VTOL 
by deflecting the th rus t  downward with variable angle 
hoods. The hoods then re t rac t  i n to  the  engine 
nacelle a f t e r  t rans i t ion .  

fans i n  VTOL a i r c ra f t  those configurations tha t  u t i l i z e  

Some of the design features 

For t he  turbojet ,  hot exhaust gases 

The primary difference between 

Two basic propulsion concepts most often con- 

De- 

Of the  many versions of packaging the  remote lift 
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a l l  or part of the lift system for  cruise appear most 
promising. Two a i rc raf t  concepts t h a t  i l l u s t r a t e  
the multi-functions of the propulsion components are 
shown i n  figure 3. The arrangement shown i n  fig- 
ure 3(a) u t i l i z e s  the  fans for  all three propulsion 
functions, lift, control, and cruise.  Four of the 
l i f t  fans have t h e i r  a x i s  ver t ica l  and are used for  
l i f t  and low speed control. The two a f t  fuselage 
fans are used during cruise as w e l l  as VTOL. These 
l i f t / c r u i s e  fans have thrust  vectoring hoods on them 
which re t rac t  in to  the nacelle for  cruise. Near each 
fan is  a turbojet  gas generator which feeds hot gases 
t o  the fan drive turbine. The ducting between gas 
generators is used for  fan control changes and gas 
sharing i f  an unscheduled turbojet  shutdown occurs. 
TBis part icular  a i rc raf t  arrangement has been ex- 
tehsively studied by McDonald-Douglas Aircraft  and 
is  described f l r t h e r  i n  reference 5. 

The a i rc raf t  i l l u s t r a t e d  i n  figure 3(b) has 
four main lift fans, eight control fans,  and four 
turbofans. The main l i f t  fans are used only for  l i f t .  
The control fans have a t o t a l  thrust  equal t o  the 
l i f t  fans but are  made smaller t o  provide system 
redundancy and fas te r  control response. Each turbo- 
fan gas generator provides a quantity of pressurized 
a i r  suff ic ient  t o  drive one main and two control 
l i f t  fans. A complicated system of ducting i s  used 
t o  share the pressurized a i r  among a number of fans 
t o  minimize the e f fec ts  of a premature turbofan 
shutdown. After the a i rc raf t  i s  wing borne the flow 
from the turbofans i s  diverted rearward for cruise 
thrust .  Additional de ta i l s  of t h i s  a i rc raf t  concept 
are reported i n  reference 6. 

ENGINE DESIGN REQUIREMENTS 

Before promising l i f t  fan engines can be identi-  
f ied a l i s t  of engine requirements must be established. 
This i s  not easi ly  done for  l i f t  engines since the 
VTOL a i r c r a f t  mission, a i rc raf t  propulsion needs , and 
applicable government regulations are i n  a s t a t e  of 
flux. Also, a f t e r  the i n i t i a l  engine requirements 
are established, resu l t s  of engine and a i rc raf t  studies 
may indicate needed changes t o  the requirements. 
f ining the engine design requirements then i s  an 
i t e r a t i v e  procedure and the requirements w i l l  probably 
change as more information i s  assembled. The re- 
quirements given i n  the following paragraphs then , 
represent the current thinking concerning l i f t  fan 
engines for  commercial use i n  the 1980's. They are 
not meant t o  be a l l  inclusive but t o  represent the 
primary considerations ident i f ied as of the writ ing 
date of t h i s  paper. 

De- 

- Noise Noise is currently the most dominant con- 
sideration affecting the selection of the l i f t  en- 
gine design variables.  
for  l o w  noise i s  complicated by (1) an incomplete 
understanding of the engine noise generating mechanism 
and (2) no of f ic ia l ly  pronounced noise l imitat ion for  
VTOL a i r c r a f t .  
gine study a target  noise leve l  was s e t ,  The t o t a l  
a i rc raf t  noise goal used for  these studies was 95 PNdB 
a t  500 f t  wZth the engines at takeoff power and de- 
veloping a t o t a l  of 120 000 l b  thrus t .  

I f  the fans are used for  a i r c r a f t  a t t i tude  con- 
t r o l  some uni ts  w i l l  momentarily operate a t  higher 
fan pressure ra t ios  while simultaneously other uni ts  
w i l l  operate a t  lower pressure ra t ios .  
-thrust condition is defined as the "noise ra t ing 
point" and i s  lower than the engine design thrus t .  

The task t o  design the  engine 

However t o  proceed with the lift en- 

The nominal 

The t o t a l  engine noise consists of exhaust j e t  
noise and the turbomachinery noise associated with 
the turbulence produced by the  rotat ing blades within 
the engine. Figure 4 shows the perceived exhaust j e t  
noise leve l  at 500 f t  as a function of fan pressure 
ra t io .  Assuming t h a t  a balanced acoustic design is  
most desirable ( i  .e. , the  suppressed rotat ing mach- 
inery noise equals the j e t  noise and thus both are 
about 3 PNdEi l e s s  than the t o t a l  noise) the j e t  noise 
cannot exceed 92 PNdB. As can be seen from figure 4 
for  t h i s  noise leve l  the fan pressure r a t i o  i s  i n  the 
range 1.22 t o  1.25 with the engines at nominaltake- 
off th rus t .  

Engine thrus t .  The t o t a l  thrust  of the l i f t  engine 
gine systems is made up of different constituents de- 
pending on the type of fan system. 
fan system both the  fan flow and core flow contributes 
t o  the t o t a l  th rus t .  In the remote fan-turbojet sys- 
tem the t o t a l  th rus t  consists of the fan flow and t i p  
turbine flow thrusts .  In addition t o  the thrust  con- 
t r ibut ion of the fan and t i p  turbine flows, an addi- 
t ional  ver t ica l  thrust  may be obtained from the core 
flow of the remote fan-turbofan system. In the engine 
design studies the t o t a l  th rus t  of the different  en- 
gine types was specified the same for  a l l  and i s  re- 
ferred t o  i n  the following paragraphs as engine thrust .  

The different  levels of engine thrust  specified 
for  the studies are explained with the help of fig- 
ure 5. The l e f t  side of the figure represents the op- 
eration of a l i f t  engine during a normal ver t ica l take-  
of f .  A nominal engine thrust  of 1 0  000 l b  a t  sea 
level  s t a t i c  (SLS) for  a 90' F day was used i n  the 
study. This thrust  value i s  the noise rating point 
as mentioned ear l ie r .  About t h i s  nominal thrust  are 
shown control excursions. It was estimated t h a t  
thrust  excursions as high as 12  500 l b  o r  as low as 
7500 l b  (225 percent) could be required. Since the 
engines may have t o  produce the maximum control thrust  
(12 500 l b )  during takeoff,  that  condition was 
chosen as the engine design point.  

On the  r ight  hand side of the figure i s  shown the 
change i n  thrust  levels  should one engine o r  fan have 
an unscheduled shutdown and a second engine shutdown 
t o  balance a i r c r a f t  moments. Then it was estimated 
the remaining engines must produce a nominal emer- 
gency thrust  of 11 600 l b  and have a control margin 
of 512.5 percent or a maximum thrust  of 13 000 lb .  
Some or a l l  of these thrus t  demands may change de- 
pending on the a i rc raf t  configuration, the type of lift 
engines used and the a i rc raf t  low speed control design. 

For all of the above thrust  values the engines 
were f lat  rated t o  90'. 
same thrus t  levels  on cooler days but at reduced tur- 
bine i n l e t  temperatures. On hot ter  days the turbine 
i n l e t  temperatures remain fixed at the maximum oper- 
ating levels  and the thrust  decreases. 

In the integral  

That i s  they produced the 

Fuel consumption. It i s  desirable t o  minimize 
the fuel  conslmrption of the l i f t  engines because a 
significant percentage of the t o t a l  on board fue l  
may be used during takeoff and landing procedures 
( re f .  6 ) .   ow f u e l  consumption is d s o  important 
should the plane have t o  hover for  extended periods 
of time, for  example, during low v i s i b i l i t y  landings. 
However because of the large number of l i f t  fans tha t  
will be needed on the a i rc raf t  low fuel  consumption 
considerations must be balanced against other engine 
considerations such as weight, compactness, and low 
cost. Accordingly cycle pressure r a t i o s  of the inte- 
gra l  engines and remote gas generators were kept a t  
o r  below 14:1 and modest decrements i n  component 

2 



eff ic iencies  of 8.3.1 engines were accepted t o  achieve 
a balanced engine design. 

Engine service l i f e .  It is  intended t h a t  the lif't 
engines have the same service l i f e  as the airframe. 
With an assumed a i rc raf t  l i f e  of 30 000 h r ,  and an 
average f l i g h t  time of 45 minutes the l i f t  engines mu& 
undergo 80 000 start-stop cycles. 
were converted t o  operational times and axe l i s t e d  i n  
Table I. A s  can be seen from the table  the t o t a l  en- 
gine l i f e  i s  5000 hours. 

engine must a lso be able t o  operate at an over thrust  
condition i n  case another engine f a i l s .  This it must 
do during the l i f e  of the a i rc raf t  without a neces- 
s i t y  for engine removal a f t e r  such an occurrence. 

The 80 000 cycles 

In  addition t o  normal engine operation t h e  l i f t  

Other considerations. Two other design require- 
men€s tha t  w i l l  be mentioned briefly are thrus t  vec- 
toring and low pollutant emissions. A thrust  vectoring 
range of - 1 5 O  t o  +45', measured from ver t ica l ,  was 

, specified for  the engines. The means of  obtaining 
t h i s  amount of vectoring may be different  for  dif-  
ferent engine types. A t  present the integral  engine 
would swivel whereas the remote fan would have thrust  
deflecting louvers. 

engines i s  tha t  they be environmentally acceptable. 
To par t ia l ly  sa t i s fy  t h i s  requirement the engines 
must minimize engine pollutants.  
max imum combustion pollutant emissions established as 
an objective for the l i f t  engines. 
that  the engines s o  f a r  studied meet these limits but 
it forues an in-depth study of the combustion process 
from another point of view. 

INTEGRAL ENGINE STUDY RESULTS 

A recent addition t o  the requirements of the l i f t  

Table I1 l ists  the 

This i s  not t o  s a y  

Preliminary design layouts of two basic integral  
engines were made based on resul ts  of an i n i t i a l  
parametric analysis. The two engines differed i n  
thermodynamic cycles and levels of technology. Only 
one of the two engines w i l l  be described i n  t h i s  paper, 
the other engine being very similar i n  concept. 

General description. A general description of the 
engine i s  given i n  Table I11 and a cutaway drawing is  
presented i n  figure 6. 
the table  are design point conditions (12 500 l b  
thrus t )  and correspond t o  the maximum,  control excur- 
sion ( f ig .  51, for normal engine operation. The 
single engine perceived noise of 87.2 PNdB i s  estimated 
for  the noise ra t ing thrust  of 10 000 lb .  

Some of the sa l ien t  design features of the engine 
are composite fan blades i n  the bypass duct, separate 
airflow i n l e t s  for  the bypass and core flows, a radial  
offaet  between the compressor and turbines,  and a 
somewhat unconventional reverse-flow combustor. Some 
of the acoustic design features of the engine are  a 
serrated fan leading edge, a large spacing between 
the fan rotor  and fan s ta tors ,  and generous use of 
noise suppression material. 
by the fan s ta tors  and a s m a l l  number of rear  s tab i l iz -  
ing s t r u t s  mounted t o  trunnions. Controls and acces- 
sories are  kept t o  a minimum. The engine has an a i r  
impingement s t a r t e r  and a small bleed air turbine t h a t  
drives the fuel  and o i l  pumps. 

The cycle numbers given i n  

The engine i s  supported 

I Fan spool. One of the problems peculiar t o  the 
integral  engine i s  the high aerodynamic loading of the 
fan drive turbine. This i s  due t o  the high engine 
bypass r a t i o  and the moderate fan blade speed, which 

together results i n  a high turbine work factor ,  ( the 
r a t i o  of specif ic  work t o  blade speed squared). Two 
approaches were considered t o  improve the  turbine 
aerodynamics, (1) gearing between the fan and fan 
turbine and, (2) adding a large number of turbine 
stages. The use of gears was abandoned because of 
the added engine complexity and no apparent advantage 
i n  engine weight. Figure 7 shows the e f fec t  on the 
work factor of adding turbine stages. 
curve shows the reduction i n  average stage work fac- 
t o r  as stages are  added. The shaded area represents 
the probable turbine efficiency. To achieve e f f i -  
ciencies i n  the 90 and above range requires s i x  t o  
eight stages. This was considered an excessive num- 
ber of stages for a lift engine. Three stages ap- 
peared appropriate considering the trade between 
performance and turbine simplicity.  

The single 

Engine noise. Since a t o t a l  a i r c r a f t  noise l i m i t  
was specified i n  the engine requirements the noise 
calculations of the study were made and are given 
below for twelve engines. The t o t a l  engine noise is  
made up of j e t  exhaust noise and rotatingmachinery 
noise. 
the selection of the  engine thermodynamics and s ize .  
The fan jet noise was  calculated t o  be 85 PNdB and 
the core j e t ,  85.8 PNdB, for  a t o t a l  j e t  noise of 
88.7 PNdB; a l l  a t  a 500 ft distance. This jet noise 
as well as other engine noise constituents are shown 
by the bar graph i n  figure 8. 

the unsuppressed and suppressed noise levels  of the 
fan and turbine. Two columns are shown for the fan,  
the a f t  radiated noise and the i n l e t  radiated noise 
heard i n  the a f t  quadrant. A s  shown a 5 PNdB reduc- 
t ion i n  source noise i s  assumed t o  account for  ad- 
vances i n  engine acoustic technology between the 
time of t h i s  study and the 1975-80 time period when 
a lift engine may be demonstrated. The 19.5 PNdB 
noise suppression i n  the exhaust duct i s  achieved 
by three acoustic s p l i t t e r s  and duct inner and outer 
wall treatment. It i s  estimated t h a t  the i n l e t  ra- 
diated noise w i l l  be reduced 4 PNdB by the fan blade 
serrations and another 5.7 PNdB must be absorbed by 
i n l e t  treatment such as rings. The inclusion of 
i n l e t  treatment may however increase the engine 
depth and would require anti-icing provisions. The 
turbine noise i s  reduced from 96.4 PNdB t o  83.8 PNdB 
by the two acoustic s p l i t t e r s  and w a l l  treatment. 

The t o t a l  noise of twelve engines i s  shown on 
the r ight  hand side of the figure with the leve l  de- 
pending on the amount of i n l e t  noise treatment. If 
the fan i n l e t  i s  t reated t o  reduce t h a t  noise by 
5.7 PNdB the t o t a l  noise for  twelve engines i s  cal- 
culated t o  be 96.1 PNdB. Without i n l e t  treatment 
the noise i s  98 PNdB. These noise levels  for the 
integral  engine and those t o  be discussed l a t e r  for 
the remote fans are subject t o  the uncertainties of 
fan i n l e t  flow conditions and cross-flow effects  
during t ransi t ion.  

REMOTE EXGINE STUDY RESILTS 

The levels  of exhaust j e t  noise were s e t  with 

On the  l e f t  hand side of the figure are shown 

The remote l i f t  fan study included the prelimi- 
nary design of a turbojet  and turbofan gas generator 
and two fans. Both kinds of remote fan systems were 
designed for  the same t o t a l  thrust  of 12  500 lb. The 
delivered a i r  from e i ther  gas generator was a t  the 
same pressure leve l  but different duct temperature. 
The temperature within the t i p  turbine scro l l ,  how- 
ever, was  the  same for e i ther  remote fan system. The 
primary difference between the two fans i s  t h e i r  de- 



In  addition the core flow of the turbofan may pos- 
s ibly be used for  low speed d r c r a f t  a t t i tude con- 
t r o l ,  ass is t ing or  relieving the lift fans of t h i s  
function. Also the  bleed flow may be diverted a f t e r  
t ransi t ion and used t o  provide cruise thrus t .  These 
apparent advantages of the turbofan, however, must be 
weighed against the increased complexity of the unit .  
A layout of the turbofan i s  shown i n  figure 12 and 
it i s  described i n  Table V. 

technology similar t o  t h a t  i n  the turbojet .  The 
pressure r a t i o  i n  the low pressure spool i s  3.64 
and i n  the  high pressure spool 3.33. 
ings i n  the  engine are supported by front , mid , and 
rear frames. 
is made i n  the l o w  pressure spool blading and i n  the 
first two compressor stages of the high pressure 

The turbofan i s  a two spool machine incorporating 

The f ive  bear- 

Extensive use of composite materials 

spool. 

CONCLUDING REMARKS 

On the basis  of the current lift engine studies 
Com- a number of quantitative resul ts  may be noted. 

parison of the information contained i n  Tables I11 t o  
V shows t h a t  dimensionally, the in tegra l  engine has 
a longer axial length than the remote lift fan but 
has a smaller overall  diameter. These dimensions may 
have an impact depending on the ins ta l la t ion  of the 
l i f t  engines i n  a par t icular  a i rc raf t  configuration. 

The specif ic  fuel  consmption of the turbojet-  
remote fan system (0.38 l b f / ( h r ) ( l b t )  and the integral  
fan engine (0.36 l b f / ( h r ) ( l b t )  are very similar. The 
turbofan-remote fan system, however, has a somewhat 
higher specif ic  fue l  consmption (0.48 l b f / ( h r ) ( l b t ) .  

about the same and neither type has yet  reached the 
goal of 95 PNdB at a 500 foot sideline. Additional 
studies must be made of i n l e t  noise suppression of 
the l i f t  fans, i f  they are t o  be used for  cruise 
( i . e .  , horizontal fan axis)  , and the gas generators. 
Also the affect  on the noise leve ls  of the fans and 
gas generators i n  crossflow and with i n l e t  dis tor t ion 
must be examined. 

that  the in tegra l  engine i s  l igh ter .  A more compre- 
hensive comparison of weights cannot be made however, 
u n t i l  both types of lift fans are ins ta l led  i n  opti- 
mized a i rc raf t  configurations and the t o t a l  propul- 
sion weights determined. 

The above quantitative resu l t s  must now be 
weighed with other engine and a i r c r a f t  considerations 
i f  a preferred l i f t  engine type i s  t o  be ident i f ied.  
Such considerations include t o t a l  instal led weight of 
each engine type, t ransi t ion performance of the en- 
gines, in-f l ight  s ta r t ing  considerations , and engine 
control functions. 
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2. Lieblein, S., "A Review of L i f t  Fan Propdsion Sys- 

3. General Elec t r ic  Company, "LF460 Detail Design" 
Sept. 1971, NASA CX 120787. 

sign pressure r a t i o s ,  one was 1.2 and the other was 
1.25. 
tails of the higher pressure r a t i o  fan and both gas 
generators are given. 

I n  the following paragraphs some specif ic  de- 

L i f t  fan. The lift fan i s  described i n  Table IV 
and a cutaway is  shown i n  figure 9. The fan has a 
single stage nickel base al loy rotor  mounted i n  two 
grease packed bearings. The rotor  i s  supported by 
three equally spaced s t r u t s  at the i n l e t .  The re- 
mote fan also has rotor leading edge serrations and 
increased spacing between the  rotor  and downstream 
s ta tors  t o  minimize rotat ing machinery noise. The 
downstream fan s ta tors  support four acoustic s p l i t -  
t e r s  i n  the exhaust duct as well as the centerbody 
fairing. The contour of the exhaust duct provides 
added flow area t o  compensate for  the s p l i t t e r  block- 
ege and t o  control the aerodynamic loading on the fan 
s ta tor .  

admission turbine. The turbine s c r o l l  i s  divided in to  
two 180' sections,  each fed by its own i n l e t  pipe. 
The temperature of the gas i n  the scroll is 15080 F. 
The turbine i n l e t  temperature and pressure r a t i o  are 
the same with e i ther  the turbojet  o r  turbofan supply- 
ing the pressurized gas. 
blades is a diffuser  where the exhaust gases are de- 
celerated t o  the same velocity leve l  as the fan flow 
t o  lower the j e t  noise. 

The breakdown of the fan noise constituents i s  
shown i n  figure 10. For these calculations it was as- 
sumed tha t  the gas generator i n l e t  noise i s  sufficient-  
l y  suppressed so t h a t  it would not add t o  the fan 
noise. A s  i n  the case of the integral  engine the num- 
bers shown i n  the figure are for  twelve fans operating 
a t  a nominal takeoff thrust  of 10 000 lb .  A 2.5 PNdB 
source reduction is  assumed t o  account for technology 
advances. This assumed reduction i s  2.5 PNdB l e s s  
than t h a t  used i n  the integral  engine design. This 
difference i s  due t o  the circumferentially leaned 
fan s ta tors  included i n  the in tegra l  engine design, 
that  are expected t o  reduce the engine noise, which 
the remote fans do not have. The incorporation of 
leaned s ta tors  i n  the remote fans was not possible for  
aerodynamic and mechanical reasons. Further reduction 
i n  the a f t  radiated noise i s  accomplished by acoustic- 
a l l y  t reated e x i t  louvers, 3 PNdB, and the four acous- 
t i c  s p l i t t e r s ,  12.3 PNdB. For the i n l e t  radiated 
noise i n  the a f t  quadrant fan blade leading edge 
serrations are planned t o  reduce the noise 4 PNdB and 
i n l e t  treatment, i f  used, another 5 PNdB. On the r ight  
of the figure are shown the j e t  noise and t o t a l  fan 
noise with and without fan i n l e t  treatment. 

Mounted at the t i p s  of the fan blade is a f u l l  

Downstream of the turbine 

Turbojet gas generator. The turbojet  gas generator 
( f ig .  11) i s  a single spool engine sized t o  deliver 
hot  pessur ized  gases t o  two l i f t  fan uni ts .  
compressor pressure r a t i o  of 1 4 : l i s  developed i n  seven 
stages, three of which have variable s ta tors .  
compressor i s  driven by a single stage cooled turbine 
having a t i p  speed of 1700 f t / sec  and an i n l e t  tem- 
perature of 2140' F. A double annular combustor i s  
used t o  shorten the overall  engine length. Composite 
materials are  planned for  use i n  the variable i n l e t  
guide vane and the f i r s t  three compressor stages. 
Additional engine information i s  l i s t e d  i n  Table V. 

The 

The 

Turbofan gas generator, The turbofan was designed 
as an al ternate  t o  the turbojet  and offers  several  
important system changes. While the turbojet  delivers 
large volumes of hot gases t o  the l i f t  fan turbine the 
turbofan delivers smaller volumes of cool gas. 

c .  4 
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TABLE I. - LIFT ENGINE OPERATIONAL TIMES 

Engine ope ra t iona l  segments: 

S t a r t u p  , checkout , and t a x i  , m i d f l i g h t  
Takeoff and t r a n s i t i o n ,  m i d f l i g h t  
Maneuver and landing , min / f l i gh t  
Taxi i n ,  m i d f l i g h t  1-1/2 

- 

Taxi i n ,  h r  
, Tota l  

0.. 
-0.. 
9 
9 

I w 

P o l l u t a n t  

Smoke 

Carbon monoxide 

To ta l  unburned 
hydrocarbons 

N i t r i c  oxide 

I T o t a l  t i m e  during engine l i f e  (40 000 f l i g h t s )  

S t a r t u p ,  checkout, and taxi, h r  1333 
Takeoff and t r a n s i t i o n ,  h r  667 
Maneuver and landing,  h r  2000 

C r i t i c a l  condition Maximum l i m i t  

Takeoff Smoke No. 15 
(SAE ARP 1179) 

I d l e  40 lb/lOOO l b  f u e l  

I d l e  8 lb/lOOO lb f u e l  

Takeoff 3 lb/lOOO lb f u e l  

loool 5000 

TABLE 11. - ENGINE POLLUTANT LIMITS 

TABLE 111. - INTEGRAL ENGINE DESCRIPTION 

Fan p res su re  r a t i o  
Fan hub pressure r a t i o  
Cycle pressure r a t i o  
Bypass r a t i o  
Turbine i n l e t  temperature,  90° dw, OF 
Core j e t  ve loc i ty / f an  j e t  v e l o c i t y  
Spec i f i c  f u e l  consumption, l b f / ( h r )  ( l b t )  

Corrected fan  flow, l b / s e c  
Corrected core flow, l b / s e c  
Design t h r u s t ,  90' day, s e a  level  s t a t i c ,  lb 

T o t a l  engine noise ,  PNdB a t  500 ft  

Noise of  12 engines (without i n l e t  

Fan t i p  diameter, i n .  
M a x i m u m  engine diameter,  i n .  
Overal l  l ength ,  i n .  
Weight, l b  
Thrust /weight 

(at  10 000 1b noise  r a t i n g  t h r u s t )  

t reatment  ) 

1.25 
1.05 

12.6 
2500 

0.36 

47 

87.2 

10 

1 . 3  

60 4 

12 500 

98 

5 7 ; l  
69.8 
43.5 
1048 
11.9 



TABLE I V .  - REMOTE FAN DESCRIPTION 

Fan pressure r a t i o  
Bypass r a t i o  
Turbine i n l e t  temperature , OF 
Turbine j e t  veloci ty/fan j e t  veloci ty  

Corrected fan flow, lb/sec 
Turbine flow, lb/sec 
Design th rus t  

Total  fan noise ,  PNdB at  500 f t  

Noise of 12 fans (without i n l e t  

Fan t i p  diameter, i n .  
Maximum fan diameter, i n .  

sea  l e v e l  s t a t i c ,  90° day, lb 

(at  10 000 l b  noise r a t ing  t h r u s t )  

treatment) 

~ Overall depth, i n .  ' Overall weighty l b  
Thrust/weight of fan 

n 

1.25 
10 

1508 
1 .o 
674 

65 

88.2 
12 500 

99 

62.1 
87 

29.5 
80 5 

15.5 

TABLE V. - GAS GENEMTOR DESCRIPTION 

Turbojet 

Fan pressure r a t i o  
Cycle pressure r a t i o  
Bypass r a t i o  
Turbine i n l e t  temperature , OF 
Specif ic  f u e l  consumption, l b f / ( h r ) ( l b t )  
Transfer duct gas temperature , OF 

Corrected i n l e t  flow, lb/sec 
Core flow, lb/sec 

Maximum engine diameter, i n .  
Overall length,  i n .  
Weight, lb  

Auxiliary combustor weight, lb 

Curb0 f an 

3.64 
1 2  

1.9 
2350 
0.47 

350 
190 

64.2 

39 
117.8 

1255 
185 

Weight of two fans plus  gas 

Thrust/weight (no ducting) 
aAlso includes weight of auxi l iary conbustors fo r  t w o  l i f t  fans. 

generator , l b  
&3137 

8.0 



(a) INTEGRAL DRIVE. 

9 

CS-56577 (b) REMOTE DRIVE. 

Figure 1. - Lift fan engine types. 

C D- 11126-02 

Figure 2(a). - VTOL Airliner concept utilizing integral engines for lift and 
separate engines for cruise. 
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Figure 2ib). - VTOL Airliner utilizing integral engines for lift and cruise. 
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CD-11128-02 

Figure 3(a). - Airliner concept with remote fans used for lift and cruise. 
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CD-11129-02 

Figure 3(b). - A i r l iner  concept with remote fans used for lift and gas gen- 
erators used for cruise. 
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Figure 4. - Exhaust jet 
noise variation with 
fan pressure ratio, 
120 000 Ib total th rus t .  
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F igure  5. - Lift eng ine  t h r u s t  variat ions. 
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Figure 6. - Integral lift engine. 
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Figure 7. - Fan tu rb ine  loading and 
efficiency characteristics. 
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Figure 8. - Integral engine noise constituents, 12 engines, 10 000 Ib 
thrust  each. 



CD-11131-28 

Figure 9. - Remote lift fan. 
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Figure 10. - Remote fan  noise constituents, 12 fans, 10 000 Ib t h r u s t  each. 



Fiaure 11. - Turbojet gas generator. 

Figure 12. - Turbofan gas generator. 
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